Author:
Evaluation:
Published: 31.01.2007.
Language: Latvian
Level: College/University
Literature: 4 units
References: Not used
  • Research Papers 'Diskrētās struktūras datorzinātnes', 1.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 2.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 3.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 4.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 5.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 6.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 7.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 8.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 9.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 10.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 11.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 12.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 13.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 14.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 15.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 16.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 17.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 18.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 19.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 20.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 21.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 22.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 23.
  • Research Papers 'Diskrētās struktūras datorzinātnes', 24.
Table of contents
Nr. Chapter  Page.
  Uzdevuma nostādne   
  Teorētiskais pamatojums   
  Kopu teorija   
  Piemērs 1.uzdevumam   
  Risināšanas shēma 1. uzdevumam   
  Grafu teorija   
  Piemērs 2. uzdevumam   
  Risināšanas shēma 2. uzdevumam   
  Paskaidrojumi programmas lietotājam   
  1.uzdevums – Attieksmes īpašību noteikšana   
  7.Kontrolpiemēra analīze   
  1.uzdevums   
  2.uzdevums   
  Secinājumi   
Extract

. Kopu teorija

Kopu teorijas būtība- ir elementu piederība kopai. Kopas parasti tiek apzīmētas ar latīņu burtiem, piemēram, A, B, C. Kopas elementus apzīmē ar simboliem, maziem burtiem, cipariem, piemēram,(a,b,c, vai 1,2,3,4 u.t.t.) Kopu var uzdod nosaucot visus tās elementus, piemēram A={1,2,3,4.}.
Kopu attēlojums:
Par kopu attēlojumu no A uz B sauc atbilstības likuma funkciju, pēc kuras kopas A elementiem piekārto kopas B elementus. F: A→B. Vai arī Par kopas A attēlojumu kopā B sauc jebkuru Dekarta reizinājuma AXB apakškopu G. Pie tam, ja pieder G, tad saka ka elementu a attēls satur elementu b. Elementus b, kurus piekārto elementiem a sauc par attēliem. b=f(a). Ja b ir elementa a attēls, tad a sauc par b pirmtēlu. a=f-1(b)
Par apvērsto attēlojumu, sauc attēlojumu f-1(b) uza, kurs katram elementam b piekārto tā pirmtēlu. f-1: B→A, b=f(a)↔a= f-1(b)
Ir divu veidu attēlojumi: attēlojums uz kopu, un attēlojums kopā. Kopas A attēlojumu kopā B sauc par viennozīmīgu, ja katram kopas A elementam, attēls satur tikai vienu kopas B elementu. (zīm 1.1)

Author's comment
Send to email

Your name:

Enter an email address where the link will be sent:

Hi!
{Your name} suggests you to check out this Atlants.lv paper on „Diskrētās struktūras datorzinātnes”.

Link to paper:
https://eng.atlants.lv/w/988254

Send

Email has been sent