Отображением множества M в множество N называется соответствие каждому элементу из M единственного элемента из N.
Мы будем рассматривать только отображение фигур в пространстве. Никакие другие отображения не рассматриваются, и потому слово "отображение" означает соответствие точкам точек.
О точке X', соответствующей при данном отображении f точке X, говорят, что она является образом точки X, и пишут X' = f(X) . Множество точек X', соответствующих точкам фигуры M, при отображении f называется образом фигуры M и обозначается M' = f(M) .
Если образом M является вся фигура N, т.е. f(M) = N, то говорят об отображении фигуры M на фигуру N.
Отображение называется взаимно однозначным, если при этом отображении образы каждых двух различных точек различны.
Пусть у нас есть взаимно однозначное отображение f множества M на N. Тогда каждая точка X' множества N является образом только одной (единственной) точки X множества M. Поэтому каждой точке X' (N можно поставить в соответствие ту единственную точку X (M, образом которой при отображении f является точка X'. Тем самым мы определим отображение множества N на множество M, оно называется обратным для отображения f и обозначается f. Если отображение f имеет обратное, то оно называется обратимым. …