Add Papers Marked0
Paper checked off!

Marked works

Viewed0

Viewed works

Shopping Cart0
Paper added to shopping cart!

Shopping Cart

Register Now

internet library
Atlants.lv library
FAQ
2,49 € Add to cart
Add to Wish List
Want cheaper?
ID number:583609
 
Author:
Evaluation:
Published: 03.12.2005.
Language: Latvian
Level: College/University
Literature: n/a
References: Not used
Table of contents
Nr. Chapter  Page.
1.  Uzdevums    3
2.  Stāvokļa mainīga metode    4
2.1  Teoretiskais pamatojums    4
2.2  Matlab realizācija    5
2.3  Grafiki    6
3.  Laplasa transformācijas    7
3.1  Teoretiskais pamatojums    7
3.2  Risinājums    8
3.3  Matlab realizācija    9
3.4  Grafiki    10
3.5  Uex(t) analītiskā izteiksme ar laplasa transformāciju    11
  Secinājumi    12
Extract

Ar ķēdes stāvokļa mainīgo metodi var iegūt vispārīgu atrisinājumu, kas derīgs pārejas procesa aprēķinam jebkurā lineārā ķēdē, kā arī izveidot skaitliskas aprēķina metodes.
Ķēdes stāvokļa vienādojumi. Par ķēdes stāvokļa mainīgajiem vispār var saukt jebkuras lielumus, kas raksturo ķēdē notiekošos elektromagnētiskos procesus- strāvas, spriegumus, mezglu potenciālus un citus lielumus. Tāpat par ķēdes stāvokļa vienādojumiem var saukt jebkurus vienādojumus, kurus apmierina stāvokļa mainīgie. Tie ir vienādojumi, kas sastādīti, izmantojot Kirhofa likumus vai arī kādu citu paņēmienu. Ķēdes stāvokļa mainīgo metodē šos lielumus un vienādojumus saprot šaurākā nozīmē: par stāvokļa mainīgajiem sauc tos lielumus, kuriem tieši lietojami komutācijas likumi, t.i. spoļu strāvas un kondensatoru spriegumus, bet par stāvokļa vienādojumiem – ķēdes diferenciālvienādojumu sistēmu, kurā atklāti izteikti stāvokļa mainīgo pirmie atvasinājumi pēc laika. Kad stāvokļa mainīgie ir atrasti, var atrast arī jebkuru citu strāvu vai spriegumu ķēdē.
Apzīmējot stāvokļa mainīgos ar x1, x2, …, xn, stāvokļa vienādojumi jebkurai ķēdei uzrakstāmi šādi:

=a11x1+a12x2++a1nxn+b1f1(t)

= a21x1+a22x2++a2nxn+b2f2(t)

= an1x1+an2x2++annxn+bnfn(t)
Šeit koeficienti an un bn veidojas no ķēdes pasīvo elementu R,L,C vērtībām, bet funkcijas fi(t) nosaka ķedē ieslēgtie avoti.

Uex(t) ANALĪTISKĀ IZTEIKSME AR LAPLASA TRANSFORMĀCIJU

Teorētiskais pamatojums.
Operatoru metode ir diferenciālvienādojumu atrisināšanas un arī pārejas procesu aprēķina metode. Šajā metodē atšķirībā no klasiskās metodes nerīkojas ar laika funkcijām, bet gan ar laika funkciju attēliem. Risinājuma gaitā vispirms iegūst meklējamās laika funkcijas attēlu, bet pēc tam var iegūt arī pašu laika funkciju.
Funkcijas attēla definēšana. Laplasa transformācija. Operatoru metodes pamatā ir šada ideja. Laika funkcijai f(t) ar kādu paņēmienu definē cita argumenta p citu funkciju F(p). Funkciju f(t) tādā gadījumā sauc par oriģinālu, bet F(p) – par tās attēlu. Attēla atbilstību oriģinālam raksta šādi:
F(p) = f(t)
jeb otrādi –
f(t) = F(p)
Ar Laplasa transformācijas paņēmienu funkcijas f(t) attēlu definē šādi:
F(p) = …

Author's comment
Load more similar papers

Atlants

Choose Authorization Method

Email & Password

Email & Password

Wrong e-mail adress or password!
Log In

Forgot your password?

Draugiem.pase
Facebook

Not registered yet?

Register and redeem free papers!

To receive free papers from Atlants.com it is necessary to register. It's quick and will only take a few seconds.

If you have already registered, simply to access the free content.

Cancel Register