Add Papers Marked0
Paper checked off!

Marked works

Viewed0

Viewed works

Shopping Cart0
Paper added to shopping cart!

Shopping Cart

Register Now

internet library
Atlants.lv library
FAQ
4,49 € Add to cart
Add to Wish List
Want cheaper?
ID number:935904
 
Evaluation:
Published: 17.02.2006.
Language: Latvian
Level: College/University
Literature: 7 units
References: Not used
Table of contents
Nr. Chapter  Page.
  Ievads    3
1.  Regresijas analīze    5
2.  Regresijas pielietošanas piemērs    7
2.1.  Metodoloģija    7
2.2.  Izlases kopa    7
2.3.  Dati    8
2.4.  Īstermiņa peļņas kalkulācija    9
2.5.  Hipotēzes    9
2.6.  Empīriskais daudzfaktoru regresijas modelis    9
2.7.  Regresijas rezultāti    10
3.  Korelācija    11
3.1.  Korelāciju diagramma    11
3.2.  Korelāciju analīze    12
3.2.  Korelāciju koeficents    12
3.4.  Korelācijas vērtēšana populācijā    16
  Izmantotā literatūra    18
Extract

Ir zināms, ka pastāv saistība starp divām vai vairākām pazīmēm, ja ir zināmi vairāku mainīgo lielumu sadalījumi
Kaut vai, piemēram, pastāv cieša sakarība starp dažādām ikdienas dzīves parādībām, kaut vai starp gaisa temperatūru un to drēbju skaitu, ko mēs uzvelkam.
“Sakarība starp divām pazīmēm tiek konstatēta tad, kad, mainoties vienai pazīmei, saskaņā ar noteiktu likumsakarību mainās arī otra pazīme. Sakarības starp pazīmēm var būt dažādas.

Pilnīga jeb funkcionāla sakarība, ja katrai xi vērtībai atbilst viena noteikta yi vērtība. Piemēram, attiecības starp dažādām mērījumu skalām vienai un tai pašai vielai (ūdeni var mērīt litros un kilogramos – 1 litrs = 1,4 kg, 2 litri – 2,8 kg, utt.).
Nepilnīga sakarība. Ja vienai mainīgā lieluma vērtībai atbilst vairākas otrā mainīgā lieluma vērtības ar tendenci uz noteiktu vidējo, tad šādu sakarību mēdz saukt par nepilnīgu vai par korelatīvu.

Ja starp divām pazīmēm pastāv sakarība, tad, zinot vienas pazīmes stāvokli, var prognozēt otras pazīmes vidējo stāvokli. Ja pastāv sakarība starp izglītības līmeni un iespēju dabūt darbu bezdarba situācijā, tad, zinot kāda cilvēka izglītības līmeni, var prognozēt, kāda ir vidējā iespējamība, ka šis cilvēks dabūs darbu.” (Kristapsone (2000))
Tautsaimniecības nozaru, uzņēmumu un citu objektu attīstība ir savstarpēji saistīta, līdz ar to savstarpēji ir saistīti arī statistiskie rādītāji, kuri raksturo šo attīstību. Sakarība starp rādītājiem var būt ciešāk vai vājāk izteikta, var saglabāties ilgāku laika periodu, vai arī būt mainīga dažādos laika periodos.
Īpaša vieta parādību savstarpējās sakarības pētīšanā ir korelācijas un regresijas metodēm.
Regresijas un korelācijas analīze pētī kvantitatīvu pazīmju sakarības. Atributīvām pazīmēm tā nav piemērota, jo neeksistē metriskas (izmērāmas) attiecības atributīvas pazīmes variantu starpā, kas, lietojot regresijas un korelācijas analīzi, ir nepieciešams. Taču, pētījot kvantitatīvu pazīmju sakarības, regresijas – korelācijas analīze dod iespēju ne vien novērtēt sakarību nozīmību, ko dod arī dispersijas analīze, bet arī aprēķināt sakarību modeli un noteikt sakarību ciešumu. Dispersijas analīze tādas iespējas nedod. Tādēļ pētot kvantitatīvu pazīmju sakarības, regresijas un korelācijas analīzei ir lielas priekšrocības.
Par korelācijas un regresijas metodi jeb regresijas un korelācijas analīzi sauc matemātisko paņēmienu kopumu, ar kuru palīdzību pēta kvantitatīvās sakarības starp mainīgiem lielumiem, ja tās ir korelatīvas. Vārdu korelācija ( atbilstība) statistikā sāka lietot angļu biologs un statistiķis F.Galtons 19.gadsimta beigās.…

Author's comment
Work pack:
GREAT DEAL buying in a pack your savings −6,48 €
Work pack Nr. 1117181
Load more similar papers

Atlants

Choose Authorization Method

Email & Password

Email & Password

Wrong e-mail adress or password!
Log In

Forgot your password?

Draugiem.pase
Facebook

Not registered yet?

Register and redeem free papers!

To receive free papers from Atlants.com it is necessary to register. It's quick and will only take a few seconds.

If you have already registered, simply to access the free content.

Cancel Register