Add Papers Marked0
Paper checked off!

Marked works

Viewed0

Viewed works

Shopping Cart0
Paper added to shopping cart!

Shopping Cart

Register Now

internet library
Atlants.lv library
FAQ
6,49 € Add to cart
Add to Wish List
Want cheaper?
ID number:603078
 
Author:
Evaluation:
Published: 11.01.2016.
Language: Latvian
Level: College/University
Literature: 3 units
References: Not used
Table of contents
Nr. Chapter  Page.
1.  Furjē analīze    3
2.  Ortogonālas bāzes funkcijas    4
3.  Bāzes funkcijas - harmoniskās funkcijas    4
4.  Bāzes funkcijas – Lagēra funkcijas    5
5.  Bāzes funkcijas – Wolša funkcijas    5
6.  Bāzes funkcijas - Hāra funkcijas    6
7.  Trigonometrisku funkciju Furjē rindas    6
8.  Pāreja no kontinuāla periodiska signāla Furjē rindas uz kontinuāla neperiodiska signāla Furjē transformāciju    7
9.  Amplitūdu spektrs, Fāzu spektrs    8
10.  Jaudas spektrālais blīvums, signāla enerģijas spektrālais blīvums    8
11.  Tiešā un inversā Furjē transformācija    9
12.  Furjē transformācijas īpašības. Konvolūcija    9
13.  Izmantotā literatūra    11
Extract

8. Pāreja no kontinuāla periodiska signāla Furjē rindas uz kontinuāla neperiodiska signāla Furjē transformāciju
Signāli, kas tiek apstrādāti, reģistrēti, pārraidīti ir neperiodiski. Tas nozīmē, ka
periodisku signālu, kā sastāvošu no harmonikām – harmoniskām svārstībām, kuru frekvences ir periodiskā signāla atkārtošanās frekvences daudzkārtņi, lielākajai daļai signālu nav tieši piemērojami. Tajā pašā laikā spektrālā pieeja – signālu attēlojums ar
harmonisku svārstību vai kompleksu eksponentfunkciju svērtu summu ir ļoti produktīva,
jo dažādas lineāras sistēmas pieņemts raksturot ar to amplitūdas frekvenču un fāzes frekvenču raksturlīknēm. Šīs raksturlīknes dod priekšstatu par to, kā sistēmā tiek pārvadītas dažādu frekvenču harmoniskas svārstības. Tāpēc, ja izdodas signālu aprakstīt kā harmonisku svārstību summu, iespējams atrast sistēmas izejas signālu veidojošo harmonisko svārstību amplitūdas un fāzes un noteikt pašu izejas signālu.
Neperiodisku signālu var aplūkot kā sastāvošu no visu frekvenču harmoniskām
svārstībām, tikai šo svārstību amplitūdas ir bezgalīgi mazas. Tādēļ to raksturošanai ieved jaunu jēdzienu – spektrālais blīvums, kas ir katras konkrētās svārstības bezgalīgi mazās kompleksās amplitūdas attiecība pret tuvāko svārstību bezgalīgi mazo frekvenču starpību. Tādējādi spektrālais blīvums ir galīga lieluma frekvences funkcija, kas parāda signālu veidojošo svārstību amplitūdu un fāzu atkarību no frekvences.
Jebkuru laikā mainīgu funkciju var apskatīt divās koordinātu telpās: laika koordinātēs un frekvenču koordinātēs. Laika koordinātes ir piemērotas funkcijas momentāno vērtību pētīšanai,
bet frekvenču koordinātes ir ērti izmantot, lai atrastu integrālos rādītājus (vidējo amplitūdu, frekvenču spektru u.c.).…

Author's comment
Work pack:
GREAT DEAL buying in a pack your savings −2,70 €
Work pack Nr. 1401509
Load more similar papers

Atlants

Choose Authorization Method

Email & Password

Email & Password

Wrong e-mail adress or password!
Log In

Forgot your password?

Draugiem.pase
Facebook

Not registered yet?

Register and redeem free papers!

To receive free papers from Atlants.com it is necessary to register. It's quick and will only take a few seconds.

If you have already registered, simply to access the free content.

Cancel Register