Add Papers Marked0
Paper checked off!

Marked works

Viewed0

Viewed works

Shopping Cart0
Paper added to shopping cart!

Shopping Cart

Register Now

internet library
Atlants.lv library
FAQ
14,20 € Add to cart
Add to Wish List
Want cheaper?
ID number:771796
 
Author:
Evaluation:
Published: 27.08.2019.
Language: Latvian
Level: College/University
Literature: 5 units
References: Not used
Table of contents
Nr. Chapter  Page.
1.  VIENDIMENSIJAS DATU ANALĪZE    4
1.1.  Statistisko rādītāju noteikšana un sadalījumu raksturojums    4
1.2.  Datu kopas statistiskie rādītāji    8
1.3.  Datu sadalījums intervālos un histogrammas    10
1.4.  Atbilstošo normālā sadalījuma varbūtību blīvuma funkcijas vērtību aprēķināšana un grafika konstruēšana    13
1.5.  Ģenerālkopas vidējā lieluma reprezentācijas intervāls un hipotēzes pārbaude    14
1.6.  Logaritmiski normālā sadalījuma aprēķins un grafiskā interpretācija    18
1.7.  Veibula sadalījuma aprēķins un grafiskā interpretācija    19
2.  DIVDEMINSIJU DATU IZLASES ANALĪZE    21
2.1.  Pāru korelācijas analīze    21
2.2.  Regresijas analīze    32
  IZMANTOTIE INFORMĀCIJAS AVOTI    33
Extract

2. DIVDEMINSIJU DATU IZLASES ANALĪZE
2.1. Pāru korelācijas analīze
Jebkuru objektu raksturo īpašības. Šīs īpašības var izteikt gan kvantitatīvi gan kvalitātīti. Kvantitatīvi izsaka skaitliskā veidā, bet kvalitatīvi apraksta ar raksturīgām pazīmēm. Pazīmes vai īpašības var ietekmēt viena otru, bet ir gadījumi kad pazīmes vai īpašības neietekmē viena otru. Ja pazīmes vai īpašības neietekmē citas pazīmes, tad tās sauc par neatkarīgām pazīmēm, bet ja pazīmes savstarpēji ietekmē viena otru, tad tās sauc par atkarīgām. Ir sastopami divi pazīmju veidi:
• funkcionālas pazīmes;
• stohastiskas pazīmes.
Atkarība ir funkcionāla, ja vienas pazīmes vērtībām atbilst stingri noteiktas otras pazīmes vērtības. Biežāk ir sastopamais veids ir stohastiskā pazīme jeb korelācija - tāda atkarība, kurā kādas pazīmes katrai vērtībai iespējams atbilst vairākas citu pazīmju vērtības.
Izšķir divu veidu pazīmes:
• Rezultatīvā pazīme – tās skaitlisko vērtību variēšanu pēta atkarībā no citu pazīmju ietekmes (Y). Katra novērojuma skaitliskās vērtības – y1, y2, y3... .
• Faktoriālā pazīme – nosaka rezultatīvās pazīmes variēšanu (X). Katra novērojuma skaitliskās vērtības – x1, x2, x3... .
Pēc formas var izšķirt lineāru un nelineāru korelāciju. Lineārā korelācijā var novērot aptuveni vienādu faktoriālo un rezultatīvo pazīmju izmaiņu raksturu. Pozitīvā lineārā korelācijā palielinoties faktoriālās pazīmes vērtībām palielinās arī rezultatīvās pazīmes vērtības. Negatīvā lineārā korelācijā palielinoties faktoriālās pazīmes vērtībām rezultatīvās pazīmes vērtības samazinās.
6. tabulā redzama divdimensiju datu kopa, kas sastāv no 365 variantēm. Tika aprēķināti empīrisko noviržu kvadrāti, kā arī teorētiskie regresenti un standartnovirzes. Izmantojot funkciju COVARIANCE.S tika aprēķināts kovarācijas koeficents, kas ir primārais x un y atkarīgās variēšanas rādītājs COV(x;y) = 29.34.

Author's comment
Work pack:
GREAT DEAL buying in a pack your savings −8,70 €
Work pack Nr. 1373473
Load more similar papers

Atlants

Choose Authorization Method

Email & Password

Email & Password

Wrong e-mail adress or password!
Log In

Forgot your password?

Draugiem.pase
Facebook

Not registered yet?

Register and redeem free papers!

To receive free papers from Atlants.com it is necessary to register. It's quick and will only take a few seconds.

If you have already registered, simply to access the free content.

Cancel Register