Add Papers Marked0
Paper checked off!

Marked works

Viewed0

Viewed works

Shopping Cart0
Paper added to shopping cart!

Shopping Cart

Register Now

internet library
Atlants.lv library
FAQ
3,49 € Add to cart
Add to Wish List
Want cheaper?
ID number:556637
 
Author:
Evaluation:
Published: 04.01.2006.
Language: English
Level: College/University
Literature: n/a
References: Not used
Extract

Ptolemy's Theorem
This theorem was proved by Giovanni Ceva (1648-1734).
Ptolemy's theorem states that given a cyclic quadrilateral (i.e. one that can be inscribed in a circle) the product of the diagonals equals the sum of the products of opposite sides.

On the diagonal BD locate a point M such that angles BCA and MCD are equal. Since angles BAC and MDC subtend the same arc, they are equal. (why?) Therefore, triangles ABC and DMC are similar.

Thus we get CD/MD = AC/AB, or AB·CD = AC·MD.

Since angles BCA and MCD are equal, then angle BCM=BCA+ACM equals angle ACD=ACM+MCD. So triangles BCM and ACD are similar which leads to
BC/BM = AC/AD, or BC·AD = AC·BM. …

Author's comment
Load more similar papers

Atlants

Choose Authorization Method

Email & Password

Email & Password

Wrong e-mail adress or password!
Log In

Forgot your password?

Draugiem.pase
Facebook

Not registered yet?

Register and redeem free papers!

To receive free papers from Atlants.com it is necessary to register. It's quick and will only take a few seconds.

If you have already registered, simply to access the free content.

Cancel Register